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Abstract
Superfluid properties of electron–hole pairs in a quantum Hall four-layer system are
investigated. The system is considered as a solid-state realization of a two-component
superfluid Bose gas with dipole–dipole interaction. One superfluid component is formed in the
top bilayer and the other component—in the bottom one. We obtain the dispersion equation for
the collective mode spectrum and compute the critical parameters (the critical interlayer
distance and the critical currents) versus the filling factor. We find that the critical currents of
the components depend on each other. The maximum critical current of a given component can
be reached if the current of the other component is equal to zero. The non-dissipative drag
effect between the components is studied. It is shown that in the system considered the drag
factor is very large. Under appropriate conditions it can be about 10%, which is at least three
orders of magnitude larger than one predicted for two-component atomic Bose gases.

1. Introduction

Among the objects that demonstrate Bose–Einstein conden-
sation or superconductivity considerable attention is given to
two-component systems. In particular, beginning from the
paper by Andreev and Bashkin [1] the possibility of a non-
dissipative drag between superfluid (superconducting) compo-
nents moving with different velocities was discussed [2–6] (see
also the review [7]). The Andreev–Bashkin effect was also
considered in astrophysics in the context of superfluid mod-
els of neutron stars [8, 9]. A related problem—the critical ve-
locities in two-component superfluid systems was studied in a
recent paper [10]. It was shown that critical velocities are es-
sentially different in the case when the two components move
with the same velocity and in the case when one of the compo-
nents does not move. In the latter case the critical velocity of a
moving component can be much higher.

Although two-component superfluid atomic Bose gases
have been realized in laboratories [11], there are certain
problems in the experimental observation of the effects caused
by relative motion of the components. On the one hand,
it is not simple to create a relative flow of superfluid
components in a mixture of Bose gases. On the other

hand, a spatial separation of components takes place in two-
component mixtures confined in a trap. In gases with point
interaction the spatial separation results in a disappearance of
the effects caused by inter-specie interaction. To overcome
these difficulties one can turn to systems where components
can be kept spatially separated in a controllable way (giving a
possibility to provide a flow of the components with different
velocities). The interaction between the components in such
systems should contain a long-range part. For example,
one can deal with a Bose gas with dipole–dipole interaction
confined in a double-layer trap [5].

In this paper we study a solid-state system where a two-
component Bose gas with the dipole–dipole interaction can
be realized. We consider a multilayer electron system where
electrons from one-layer couple with holes from the adjacent
layer. Since such Bose particles (electron–hole pairs) have
a small mass they may demonstrate superfluid behavior at
rather high temperatures (much higher than required for the
Bose–Einstein condensation of alkali metal vapors). Electron–
hole pairs in such systems have a large dipole momentum and
the dipole–dipole interaction mainly determines the collective
properties of a gas of such pairs.

To be more specific, we consider a four-layer electron
system in a strong magnetic field perpendicular to the layers
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Figure 1. The four-layer system with a two-component gas of
electron–hole pairs.

(a multilayer quantum Hall system). For bilayer quantum
Hall systems with total filling factor equal to unity the
theory predicts [12] the existence of a superfluid condensate
of indirect excitons in the systems. An indirect exciton
corresponds to a bound state of an electron belonging to
one layer and a hole (an empty state in the lowest Landau
level) belonging to the other layer. This prediction was
partially confirmed in experiments [13–15]. Bose–Einstein
condensation of metastable (optically generated) indirect
excitons in zero magnetic field was also observed [16, 17].
As was shown in [18], multi-component excitonic superfluid
condensates can be realized in multilayer quantum Hall
systems with an even number of layers and the average filling
factor per layer equal to one-half. According to [18], electron–
hole pairs emerge in separate bilayers, i.e., a given excitonic
component belongs to a given double-layer complex. Here
we consider a four-layer system with the filling factors of the
layers ν1 = νT, ν2 = 1 − νT, ν3 = νB, ν4 = 1 − νB. In such
a system one specie is formed by coupled electrons and holes
from layers 1 and 2, with the other specie formed by coupled
carriers from layers 3 and 4 (figure 1).

In the system considered a flow of electron–hole pairs is
equivalent to two oppositely directed electrical currents in the
adjacent layers. Therefore, a superfluid state of such pairs can
be considered as a specific superconducting state. Counterflow
supercurrents can carry an electrical current from the source
situated at one end of the system to the load situated at the
opposite end (if the interlayer tunneling is negligible small,
the dissipation is negligible as well [19]). Experimentally one
can provide separate contacts to each layer. It allows one to
control and measure the supercurrents in each bilayer complex.
Therefore, it is more appropriate to formulate the problems not
in terms of superfluid velocities, but in terms of supercurrents.

In this paper we address two problems. First, we
investigate critical currents in a four-layer quantum Hall
system. We show that the behavior of critical currents
is qualitatively the same as that of critical velocities in
two-component Bose gases (with the important advantage
that the effect in multilayers can be registered by electrical
measurements). Then, we consider the non-dissipative drag
between the components and compute the drag factor. We
predict a very large drag factor for quantum Hall multilayers:
under appropriate conditions it can reach 10% (three orders of
magnitude higher than the most optimistic estimates for atomic
Bose gases).

Our study is based on the analysis of collective mode
spectra. We follow the approach proposed in [20] for the

study of bilayer systems with zero imbalance of filling factors
(ν1 = ν2 = 1/2). In section 2 we extend the approach [20]
for the case of an arbitrary imbalance. In section 3 we obtain
the spectra of excitations for the four-layer system, find the
critical interlayer distance versus the filling factor, and obtain
the relation between the critical currents. The non-dissipative
drag effect is considered in section 4.

2. The approach

Let us begin with a discussion of the mechanism that
determines critical supercurrents in quantum Hall bilayers
(multilayers). In bulk superconductors the restriction on the
value of the supercurrent emerges from the requirement that
the magnetic field produced by electrical currents should be
lower than the thermodynamic critical magnetic field. For
thin films the critical magnetic field is higher than for bulk
superconductors, and for a small thickness w of the film it
increases by the law Hc ∝ 1/w. Due to the almost two-
dimensional character of conducting layers in quantum Hall
systems the critical magnetic field should be high. The critical
current is determined by an essentially different mechanism.
This mechanism is just the generalization of the Landau
mechanism of destruction of superfluidity (governed by the
Landau criterion). The critical current can be found from the
requirement that in a superconducting state the energies of
all collective excitations should be real valued and positive.
In addition we note that electrical currents close to critical
ones produce magnetic fields much smaller than the terrestrial
magnetic field. Finally, the magnetic mechanism of destruction
of superconductivity is irrelevant for quantum Hall bilayers
(multilayers).

To clarify matters we will describe the approach with
reference to a bilayer system. Let a double-layer electron
system be situated in a magnetic field B perpendicular to the
layers. The electron density ρ = ρ1 +ρ2 satisfies the condition
νtot = 2πl2ρ = 1, where l = √

h̄c/eB is the magnetic length,
i.e. the filling factor of layer 1 is ν1 = ν (ν < 1), and the
filling factor of layer 2 is ν2 = 1 − ν. The value ν is the
parameter of the problem. Since ν1, ν2 < 1 all the carriers
belong to the lowest Landau level (under the assumption that
the Coulomb energy is small compared to the energy gap
between the Landau levels). We take the Hamiltonian in the
lowest Landau level approximation:

H = 1

2S

2∑

n,n′=1

∑

q

Vn,n′(q)

{
ρn(q)ρn′(−q)− δn,n′ρn(0)

× exp

(
− l2q2

2

) }
, (1)

where S = Lx Ly is the area of the layer, Vn,n′(q) =
2πe2e−dq|n−n′ |/εq is the Fourier-component of the Coulomb
potential, d is the distance between the layers, ε is the dielectric
constant, and

ρn(q) =
∑

X

c†
n

(
X + qyl2

2

)
cn

(
X − qyl2

2

)

× exp

(
iqx X − q2l2

4

)
(2)

2
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is the Fourier-component of the electron density in the nth
layer. In (2) c†

n(X) and cn(X) are the creation and annihilation
operators for electrons in the nth layer in the state described by
the wavefunction ψX (r) = exp(−iXy/ l2 −(x − X)2/2l2). We
imply that the interlayer tunneling amplitude t is much smaller
than the Coulomb energy Ec = e2/εl and neglect the tunneling
in the Hamiltonian (1). We will discuss the validity of such an
approximation in more detail at the end of this section. Here
we just mention that in the bilayer systems used in experiments
the tunneling amplitude t ≈ 50μK [13] (6 orders of magnitude
smaller than the Coulomb energy).

The state with electron–hole pairing can be described
by a BCS-like many-body wavefunction |�〉 = ∏

X [uX +
vX h†

1(X)c
†
2(X)]|vac〉, where h†

1 is the creation operator of the
hole in the layer 1 and |vac〉 is the vacuum state defined as a
state with a completely filled layer 1 and an empty layer 2. The
u–v coefficients satisfy the condition |uX |2 + |vX |2 = 1. This
function can be presented in another equivalent form

|�〉 =
∏

X

[
cos

θX

2
c†

1(X)+ eiϕX sin
θX

2
c†

2(X)

]
|0〉, (3)

where θX = θ(X) and ϕX = ϕ(X) are arbitrary functions. The
quantity θ is connected with the local filling factors νX,1(2) =
(1 ± cos θX )/2. One can see that ϕX is the phase of the
order parameter �X = 〈�| c†

1X c2X |�〉 = eiϕX
√
νX (1 − νX )

which corresponds to the electron–hole pairing. At θ = const
and ϕ = 0 the function (3) in the coordinate representation
coincides with the famous (1, 1, 1) Halperin wavefunction (see,
for instance, [21]).

In the state (3) the energy of the system reads as

E = 1

2Ly

∑

X,X ′

{[H (X − X ′)− FS(X − X ′)] cos θX cos θX ′

− FD(X − X ′) sin θX sin θX ′ cos(ϕX − ϕX ′)
}
, (4)

where the quantities

H (X) = e2

2ε

∫ ∞

−∞
dq

1 − e−|q|d

|q| eiq X− q2l2

2 ,

FS(X) = e2

2ε
e− X2

2l2

∫ ∞

−∞
dq√

q2 + X2/ l4
e− q2 l2

2 ,

FD(X) = e2

2ε
e− X2

2l2

∫ ∞

−∞
dq√

q2 + X2/ l4
e−|q|d− q2l2

2

(5)

describe the direct Coulomb interaction, the exchange
interaction in a given layer, and the exchange interaction
between the layers, respectively.

We consider excitations above a homogeneous state with
a stationary superflow of electron–hole pairs along the x
direction. Such a state corresponds to θX = θ0 independent
of X and the phase ϕX = QX linear in X . The energy of the
homogeneous state is found from equation (4) and reads as

E (0) = S

4πl2

(
[H(0)− FS(0)] cos2 θ0 −FD(Q) sin2 θ0

)
. (6)

Here the functions displayed calligraphically indicate the
Fourier transforms defined as A(q) = (1/2πl2)

∫ ∞
−∞ dX exp

(−iq X)A(X). The explicit expressions for the quantities in (6)
are

H(q) = e2

2εl2
e− q2l2

2
1 − e−d|q|

|q| , (7)

FS(q) = e2

2ε

∫ ∞

0
dke− k2 l2

2 J0(kql2), (8)

FD(q) = e2

2ε

∫ ∞

0
dke− k2 l2

2 J0(kql2)e−kd . (9)

Fluctuations over the stationary state can be parametrized
as m̃z(X) = cos θX − cos θ0 and ϕ̃X = ϕX − QX . The energy
of fluctuations in a quadratic approximation has the form

Efl = S

4πl2

∑

q

[
m̃z(−q)Kzz(q)m̃z(q)+ 2m̃z(−q)

× Kzϕ(q)ϕ̃(q)+ ϕ̃(−q)Kϕϕ(q)ϕ̃(q)
]
. (10)

In (10) the Fourier components of the fields m̃z(X) and ϕ̃X are
defined as

m̃z(q) = 2πl2

S

∑

X

m̃z(X)e
−iq X ,

ϕ̃(q) = 2πl2

S

∑

X

ϕ̃(X)e−iq X .

(11)

In equation (10) the components of the matrix K read as

Kzz(q) = H(q)− FS(q)+ FD(Q)

+
(
FD(Q)− FD(q + Q)+ FD(q − Q)

2

)
cot2 θ0, (12)

Kzϕ = −i cos θ0
FD(q + Q)− FD(q − Q)

2
, (13)

Kϕϕ(q) = sin2 θ0

[
FD(Q)− FD(q + Q)+ FD(q − Q)

2

]
.

(14)

One can note that equation (12) diverges at θ0 = 0 and
θ0 = π and the approximation (10) is violated. However a
θ0 = 0 (θ0 = π) corresponds to filling factors ν1 = 0 and
ν2 = 1 (and vice versa for θ0 = π ). At such filling factors the
density of electron–hole pairs is equal to zero and one cannot
speak about the spectrum of collective excitation in the gas of
the pairs. The cases of θ0 close to 0 or π corresponds to a low
density of pairs and the approximation (10) is valid under the
condition that the density fluctuation is small as compared to
the ground state density. The latter condition is equivalent to
|m̃z(q)| 	 sin θ0.

To quantize the energy (10) one notes that m̃z and ϕ̃ are
the conjugated quantities and the commutator of the operators
that correspond to these variables is equal to

[m̂z(q), ϕ̂(q
′)] = −2i

2πl2

S
δq,−q ′ . (15)

The operators m̂z(q) and ϕ̂(q) can be expressed in terms of
Bose creation and annihilation operators in a common way

m̂z(q) = A(bq + b†
−q), ϕ̂(q) = iB(bq − b†

−q), (16)

3
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Figure 2. Relative directions of electrical currents in the layers ( j )
and the velocities of electron–hole pairs (v) at ν < 1/2 (a) and
ν > 1/2 (b).

where the amplitudes satisfy the condition AB = 2πl2/S.
Replacing the variables m̃z(q) and ϕ̃(q) in (10) with the
operators (16) and requiring vanishing of the terms containing
two creation (two annihilation) operators one finds the explicit
expressions for the amplitudes

A =
√

2πl2

S

(Kϕϕ(q)
Kzz(q)

) 1
4

, B =
√

2πl2

S

( Kzz(q)

Kϕϕ(q)

) 1
4

.

(17)
As a result one obtains the Hamiltonian for the collective
excitations

Hfl =
∑

q

E(q)
(
b†(q)b(q)+ 1

2

)
, (18)

where
E(q) = 2

(√
Kϕϕ(q)Kzz(q)+ K̃zϕ(q)

)
(19)

(with K̃zϕ(q) = iKzϕ(q)) is the spectrum of collective
excitations.

It is instructive to compare the spectrum (19) with the
Bogolyubov spectrum. Let us introduce formal notations ε,
v, γ and n and present equation (19) in the Bogolyubov form

E(q) = √
ε(ε + 2γ n)+ h̄ qv. (20)

In (20) the kinetic energy is defined as

ε = 2FD(Q)− FD(q + Q)− FD(q − Q). (21)

In the long wave limit (q, Q 	 l−1) this quantity reduces to
the standard expression for the kinetic energy ε = h̄2q2/2M ,
where

M = 2εh̄2

e2l

[√
π

2

(
1 + d2

l2

)
exp

(
d2

2l2

)
erfc

(
d√
2l

)
− d

l

]−1

(22)

is the magnetic mass of the pair (see, for instance, [22]).
In (20) the density is defined as n = ν(1 − ν)/2πl2. In

the limit ν → 0 (or (1 − ν) → 0) this quantity coincides with
the density of electron–hole pairs (in this case one can easily
mark out the pairs from the background, see figure 2). The
factor ν(1 − ν) appears due to the electron–hole symmetry of
the problem.

The superfluid velocity in (20) is defined as

v = FD(q + Q)− FD(q − Q)

h̄q
(2ν − 1). (23)

At q, Q 	 l−1 it reduces to a expression v = (h̄ Q/M)(1−2ν)
that differs from the common expression for the superfluid
velocity by the factor 1 − 2ν. At small ν this factor approaches
unity and the difference disappears, but at zero imbalance
(ν = 1/2) it is equal to zero and the last term in (20) vanishes.
This feature can be understood from the following arguments.
The sign of Q (gradient of the phase) determines the direction
of the current. If one describes the supercurrent as motion of
electron–hole pairs then the direction of the current depends
on the direction of the superfluid velocity and on the direction
of polarization of electron–hole pairs (figure 2). Therefore at
given Q the filling factors ν < 1/2 and ν > 1/2 corresponds
to opposite directions of superfluid velocities. The factor
(1 − 2ν) changes its sign under substitution ν → 1 − ν and
its appearance in the expression for v reflects the electron–hole
symmetry of the problem.

The interaction parameter γ in (20) is given by the
expression

γ = 8πl2

[
H(q)− FS(q)+ FD(q + Q)+ FD(q − Q)

2

]
.

(24)

The first term in (24) is caused by the direct Coulomb
interaction between dipoles, two other terms correspond to the
exchange interaction. One can see that at small q the direct
interaction term reduces to γ0 = 4πe2d/ε. It is just the
interaction parameter for a two-dimensional gas of classical
dipoles (polarized perpendicular to the layer). We also note
that in the limit d → 0 (in which the pairs do not interact
with each other) the quantity (24) approaches zero, and the
collective excitation spectrum (20) becomes the spectrum of
free particles E(q) = ε = h̄2q2/2M (at Q = 0 and ql 	 1).

Thus, the spectrum (19) is similar to the Bogolyubov
spectrum but there are certain differences caused by the
electron–hole symmetry. The result (19) at ν = 1/2 coincides
with the spectrum obtained in [20]. In the low density limit
ν 	 1 (low concentration of the pairs) and at small q the
result (19) reduces to the one found in [23] on the basis of the
Gross–Pitaevskii equation.

According to the Landau criterium the energy (19) should
be positive and real valued for all q . At d > dc (critical
dc depends on ν) the spectrum is already complex-valued at
Q = 0. It means that at given d and ν the superfluid state
cannot be realized at all. At d < dc the Landau condition is
violated at Q > Qc. The value Qc (which depends on ν and
d/ l) determines the critical current. The relation between Qc

and the critical current can be obtained as follows. At nonzero
vector potential the phase gradient Q in the energy (6) should
be replaced with the gauge invariant quantity

Q → Q − (e/h̄ c)(A1 − A2), (25)

where Ai is a vector potential in the i th layer. In a given
layer the current (density of the current) is obtained from the

4
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equation jn = c dε/dAn , where ε = E (0)/S is the energy per
unit area. Taking into account (25), one finds j1 = − j2 =
−(e/h̄S) dE (0)/dQ, or, in the explicit form,

j1 = − j2 = e

h̄

1

4πl2
sin2 θ0

dFD(Q)

dQ
. (26)

Substituting equation (8) into (26) one obtains the following
relation between Q and the current

j1 = − j2 = − e3

2πεl2h̄
ν(1 − ν)

∫ ∞

0
dk̃ e− k̃2

2 k̃ J1(k̃ Ql) e−k̃d/l .

(27)
At small Q (Q 	 l) the current is proportional to the phase
gradient: j1 = (e/h̄)ρs Q, where ρs = h̄2n/M is the superfluid
stiffness.

One can easy check that the value of the integral in (27)
at any Q and d does not exceed 0.45. Therefore, in any case
the supercurrent is less than jm ≈ 0.018e3/εl2h̄. With typical
parameters ε = 12.5, l = 100 Å one evaluates jm ≈ 5 A m−1.
Note this value of counterflow currents corresponds to a very
small value for the component of magnetic field parallel to the
layers produced by the current (By ≈ 6 × 10−6 T). Taking into
account the Landau criterion this quantity is even smaller.

Now let us discuss the influence of tunneling on the
critical current. In the general case tunneling reduces the
critical current, moreover it may destroy the superfluid state
completely [20]. To explain this effect it is instructive to
introduce the Josephson length λ = l

√
2πρs/t

√
ν(1 − ν) (see,

for instance, [19, 20]). This quantity determines the size of the
soliton (Josephson vortex) in the bilayer quantum Hall system.
If the Josephson length is small λ < 2π/Qc and the gradient of
the phase caused by the soliton is large (larger than the critical
gradient Qc) the tunneling significantly influences the critical
parameters. But such a λ corresponds to quite large tunneling
amplitudes (t/EC > 10−2 for ν = 1/2 and d ≈ l). Thus, in a
common experimental situation (t/EC ∼ 10−6) the tunneling
can almost be neglected for all relevant values of ν and d/ l.

3. The excitation spectrum and critical parameters
for the four-layer system

Let us turn to the consideration of the four-layer quantum Hall
system where a two-component superfluid gas of electron–hole
pairs can emerge. For definiteness, we consider a system with
equal distances between the adjacent layers. We specify the
case where the supercurrents in both components are directed
along the same axis.

The Hamiltonian of the system has the form (1) (with
the summation over four layers). According to the result
of [18] the electron–hole pairs are formed separately in the
n = 1, 2 bilayer complex and in the n = 3, 4 bilayer
complex. Correspondingly, the many-body wavefunction can
be presented as a product of the functions (3):

|ψ〉 =
∏

X

(
cos

θTX

2
c†

1X + sin
θTX

2
eiϕTX c†

2X

)

×
(

cos
θBX

2
c†

3X + sin
θBX

2
eiϕBX c†

4X

)
|0〉. (28)

In the state (28) the energy of the system consists of three
terms:

E = ET + EB + ETB. (29)

In (29) ET and EB are the bilayer energies (given by
equation (4)). The cross term has the form

ETB = 1

2Ly

∑

X,X ′
HTB(X − X ′) cos θT(X) cos θB(X

′), (30)

where HTB(X) = l2
∫ ∞
−∞ dq eiq XHTB(q) with

HTB(q) = e2

2εl2
e−d|q| (1 − e−d|q|)2

|q| e− q2l2

2 . (31)

Note that in the state (28) the cross energy does not contain the
exchange part.

The stationary homogeneous state is described by four
parameters: νi = (1 + cos θ0i)/2 and Qi = dϕi X/dX (i =
T,B). The energy in this state reads as

E (0) = E (0)
T + E (0)

B + S

4πl2
HTB(0) cos θ0T cos θ0B, (32)

where E (0)
T (E (0)

B ) are determined by the equation (6) with
θ0 = θ0T (θ0B) and Q = QT(QB).

The energy of fluctuations is found by the same procedure
as for the bilayer system. The result is

Efl = S

4πl2

∑

q

{ ∑

i=T,B

[
m̃i,z(−q)Kii

zz(q)m̃i,z(q)

+ 2m̃i,z(−q)Kii
zϕ(q)ϕ̃i(q)+ ϕ̃i (−q)Kii

ϕϕ(q)ϕ̃i(q)
]

+ m̃T,z(−q)KTB
zz (q)m̃B,z(q)

}
, (33)

where diagonal in i components of the matrix K are given
by the expressions (12)–(14), and the non-diagonal in i
component is KTB

zz (q) = HTB(q).
Replacing m̃i,z(q) and ϕ̃i(q) by the operators

m̂i,z(q) =
√

2πl2

S

(
Kii
ϕϕ(q)

Kii
zz(q)

) 1
4

(bi,q + b†
i,−q),

ϕ̂i(q) = i

√
2πl2

S

(
Kii

zz(q)

Kii
ϕϕ(q)

) 1
4

(bi,q − b†
i,−q)

(34)

we obtain the Hamiltonian written in terms of Bose creation
and annihilation operators

Hfl =
∑

q

[ ∑

i=T,B

(
E0,i(q)+ h̄ qvi

) (
b†

i,q(q)bi,q + 1
2

)

+ gq(b
†
T,qbB,q + bT,qbB,−q + h.c.)

]
(35)

with E0,i(q) = 2
√
Kii
ϕϕ(q)Kii

zz(q) and

gq = 1

2
HTB(q) 4

√
KTT
ϕϕ(q)KBB

ϕϕ (q)

KTT
zz (q)KBB

zz (q)
. (36)
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Figure 3. Critical interlayer distance for the four-layer system versus
the filling factor (ν = νT = νB).

In (35) the quantities vi are given by equation (23) (with
Q = Qi and ν = νi ).

The Hamiltonian (35) coincides in form with the one
obtained in [6] for the two-component superfluid Bose gas. Its
diagonalization yields

E =
∑

q

∑

α=1,2

Eα(q)
(
b†
α,qbα,q + 1

2

)
, (37)

where b†
α (bα) are the operators of creation (annihilation) of

collective excitations, Eα(q) are the excitation spectra. The
dispersion equation for the spectra is analogous to one obtained
in [10]:

[E2
0,T(q)− (E − h̄vTq)2][E2

0,B(q)− (E − h̄vBq)2]
− 4g2

q E0,T(q)E0,B(q) = 0. (38)

One can show (see [10]) that the energies of collective
excitations are real valued and positive if the quantities E0, j(q)
are real valued for all q , and the following inequalities are
satisfied

[E2
0,T(q)− (h̄ vTq)2][E2

0,B(q)− (h̄ vBq)2]
− 4g2

q E0,T(q)E0,B(q) > 0, (39)

E0,T(q)− h̄ vT|q| > 0 (40)

(the condition (40) can be replaced by E0,B(q) > h̄vBq).
Putting QT = QB = 0 and solving equation (38) one

obtains the spectra of collective modes at zero currents. The
requirement for real-valued spectra yields the critical interlayer
distance dc. The dependence of dc on the filling factors is
shown in figure 3 (for νT = νB). The behavior of the critical
interlayer distance is the same as for the bilayer system [24],
but the absolute values of dc are a little bit smaller. The
minimal critical distance (dc,min ≈ 1.015l) corresponds to the
case of zero imbalance of filling factors. At d > dc,min one can
also comment on the critical filling factors (that decrease with
an increase of d).

A state with nonzero supercurrents can be realized only
for d < dc(νT, νB) if for given Qi the spectra satisfy the
inequalities (39), (40). The currents are determined by the
relation ji = −(e/h̄S) dE (0)/dQi . Since the cross term in

JT

JB
0.002 0.0030.001

0.001

0.002

0.003

Figure 4. Critical currents (in e3/h̄εl2 units) at d/l = 0.9 and the
filling factors νT = νB = 0.5, 0.25, 0.15, 0.07 (from the top to the
bottom curve).

equation (32) does not depend on Q j , the relation between
Qi and ji is same (equation (26)) as for the bilayer system (if
one neglects the fluctuating part of energy, see section 4). The
inequalities (39), (40) determine a joint condition on Qi and
the critical current of one component depends on the current of
the other component.

The relations between the critical currents for d/ l =
0.9 and νT = νB are shown in figure 4. According to
figure 4, typical absolute values of the critical currents are
less or of order of 1 A m−1. Comparing the results presented
in figure 4 with the ones of [10] one can see that the
critical currents demonstrate a behavior similar to the one for
critical velocities in two-component superfluid Bose gases.
Namely, the maximum supercurrent of one component can be
reached at zero supercurrent of the other component, while
at equal currents their allowed values are the smallest one.
Since measurements of electrical currents in the layers are
simpler than the measurements of superfluid velocities in two-
component mixtures, quantum Hall four-layer systems can
be used for the observation of specific behavior of critical
velocities in two-component superfluids [10].

4. Non-dissipative drag between the components

Equation (26) used in the previous section for the calculation
of the current does not take into account the energy of
fluctuations. Therefore, the results obtained are valid at
temperatures much smaller than the Coulomb energy. In
two-component systems the fluctuations yield an additional
contribution to the current even at zero temperatures. This
contribution is caused by the energy of zero-point oscillations.
It is a rather small contribution and it can be neglected
for calculations of the critical currents. Nevertheless, this
contribution determines a new effect—a non-dissipative drag
between the components. The value of the non-dissipative drag
decreases with an increase of the temperature, but the decrease

6
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of the drag factor is essential at temperatures larger than the
interaction energy [6]. Here, for simplicity, we consider the
case of zero temperatures and small phase gradients (Qil 	
1).

Taking into account the zero-point oscillations energy

E = E (0) + 1
2

∑

α=1,2

∑

q

Eα(q) (41)

and expanding it in a series in Qi one obtains the following
expression for the energy

E ≈ E0 + S

2

∑

ik

�ik Qi Qk, (42)

where E0 is independent of Qi , and Λ is some symmetric real
matrix. The mean-field energy E (0) in (41) is diagonal in Qi ,
but the zero-point oscillation energy contains a non-diagonal
term. Due to this a supercurrent of a given component depends
on the phase gradients of both components

ji = e

h̄

∑

k

�ik Qk . (43)

The latter results in the non-dissipative drag effect. Indeed,
let the current in the drive component (e.g. component T) be
given (it is fixed by an external source) while the current in
the drag component (B) is not fixed. The value of current in
the drag component can be found from the requirement of a
minimum of the energy equation (42) subject to the constraint
jT = const. One can see that the drag current is nonzero and
proportional to the non-diagonal component of the matrix Λ:

jB = �BT

�TT
jT. (44)

We define the drag factor as the ratio of the drag current to
the drive current: fdr = �BT/�TT. As was found in [5, 6]
the drag factor for atomic Bose gases is rather small—the most
optimistic estimates yield fdr ∼ 10−4. Let us compute the drag
factor for the quantum Hall multilayers.

The main contribution to the diagonal components of Λ
comes from the energy E (0), and the quantity �TT in the
leading order is evaluated as �TT = h̄2nT/M (ni = νi(1 −
νi)/2πl2). The non-diagonal component of Λ is caused by the
zero-point oscillation energy. Strictly speaking, to compute
this energy one should obtain the spectrum of collective
excitations for all q (not only for q ‖ x̂). But if one needs
only non-diagonal terms in Qi , and they are assumed to be
small, an approximate dispersion equation can be used. This
equation is obtained from (38) if one replaces the quantities
h̄vi q with h̄vi qx and neglects the dependencies of E0,i on Qi .
This approximation can be justified by observing that in the
series for Eα(q) the QT QB terms only come from the product
vBvT (see [6]).

Such an approximation yields the dispersion equation

[E2
T−(E−h̄ vTqx)

2][E2
B−(E−h̄ vBqx)

2]−4(γ ′)2ε2nTnB = 0,
(45)

where Ei = √
ε[ε + 2γ ni ] are the spectra of excitations

for decoupled one-component systems, ε = 2[FD(0) −

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12
d/l=1.3
d/l=1.06
d/l=1

Figure 5. Drag factor versus the filling factor (ν = νT = νB).

FD(q)] is the kinetic energy of electron–hole pairs, γ =
8πl2[H(q) − FS(q) + FD(0)] and γ ′ = 4πl2HTB(q) are the
Fourier components of the interaction potentials, and vi =
(2/h̄ q)(dFD(q)/dq)(2νi − 1)Qi are the superfluid velocities
(with factors that account the electron–hole symmetry).

Equation (45) coincides in form with one for the atomic
two-component Bose gases [6, 10]. To obtain �BT we present
the solutions of (45) as a series in vi and substitute them
into (41). The details of such a procedure are described in [6].
Here we present the final expression for the drag factor

f BT
dr = 2M

π h̄2nT
(1 − 2νT)(1 − 2νB)

∫ ∞

0

(γ ′)2nTnBε
2

EαEβ(Eα + Eβ)3

×
(

dFD

dq

)2

q dq, (46)

where

Eα(β) =

√√√√ E2
T + E2

B

2
±

√
(E2

T − E2
B)

2

4
+ 4(γ ′)2ε2nTnB

(47)
are the energies of collective excitations at QT = QB = 0.

Since the problem has one energy parameter (the
Coulomb energy e2/εl) the drag factor (46) depends only on
dimensionless quantities d/ l, νT and νB. The dependence of
the drag factor on the filling factor (ν = νT = νB) at different
d/ l is shown in figure 5. One can see that this dependence has
an extremum at small ν (small density of the pairs). A similar
feature was obtained for atomic Bose gases with dipole–dipole
interaction [5].

The specific feature is a sharp increase of the drag factor
near critical ν (or d , see figure 6). The effect is caused by a
roton-like minimum in the spectrum of the lowest collective
mode (figure 7).

Other specific features are the vanishing of the drag effect
at νB = 1/2 (νT = 1/2), and the alternation of the sign of
the drag factor under a change of sign of the filling factor
imbalance (νT to 1 − νT or νB to 1 − νB). The alternation of
the direction of the drag current can be observed if one keeps
one of the filling factors constant, while the other filling factor

7
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0.02

0.04

0.06

d/l

fdr

0

Figure 6. Drag factor versus the interlayer distance
(at νT = νB = 1/4).

is tuned from νi < 1/2 to νi > 1/2. This feature can be
understood from the electron–hole symmetry argument (see the
discussion in section 2).

However the main feature is the large absolute values of
the drag factor (102–103 times larger than the most optimistic
figures for the atomic Bose gases). Large values of the effect
are caused by a number of factors. As follows from the
consideration [5, 6] the drag effect in two-dimensional systems
can be larger than in three-dimensional ones, but for Bose gases
in bilayer traps large values are not reached due to weak inter-
species interaction. Fortunately, in quantum Hall multilayers
the interaction between different superfluid components is of
the same order as the interaction inside a given component.
Moreover, the intra-component interaction is reduced due to
the exchange interaction. Finally, the drag effect is enhanced
considerably by the presence of the roton-like minimum in
the energy spectrum, and this minimum becomes deeper at
interlayer distances or filling factors close to critical ones
(figure 7). All these factors work in favor of the drag effect and
result in a giant drag factor in comparison with atomic two-
component Bose systems.

5. Conclusion

In conclusion, we have studied superfluid properties of a two-
component gas of electron–hole pairs in a quantum Hall four-
layer system. We have found that the critical parameters
(critical interlayer distance and critical currents) for this system
are slightly less than but of the same order as bilayers. The
critical currents in the two-component gas of electron–hole
pairs demonstrate behavior similar to one of atomic two-
component Bose gases. In particular, the largest value of
the critical current in a given component can be reached if
the current in the other component is equal to zero. In
multilayer quantum Hall systems this peculiar behavior of
two-component superfluids can be observed by electrical
measurements. The non-dissipative drag effect between the
components is predicted. The effect takes place only at nonzero
imbalance of filling factors of each (top and bottom) bilayer,
and the drag current alternates its direction under a change
of sign in the imbalance in one of the bilayers. The drag

0.2 0.4 0.6 0.8 1 1.2

0.05

0.10

0.15

0.20
E

ql

+_

Figure 7. The energies (in e2/εl units) of the collective modes at
νT = νB = 1/4. Dashed curves—d = l , solid curves—d = 1.16l .

factors are quite large, and the largest values can be achieved
at interlayer distances close to the critical ones.
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